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Abstract. We calculate energy levels, dipole moments and radiative broadening of interface fluctuation
quantum dots. For optically allowed states, the dipole moment grows proportionally to the lateral quantum
dot radius while the radiative broadening saturates towards the quantum well radiative broadening for large
lateral quantum dot radii. This is accompanied by a change in the angular emission pattern, concentrating
emission in forward and backward direction. Optically forbidden states do not couple to light propagating
in the growth direction yet they may have a considerable radiative broadening due to spontaneous emission
in other directions.

PACS. 78.67.Hc Quantum dots – 78.60.-b Other luminescence and radiative recombination –
78.70.-g Interactions of particles and radiation with matter

1 Introduction

Interface fluctuation quantum dots (IFQD’s) are large
monolayer islands naturally formed when growing struc-
tures with growth interruptions [1–3]. Their large dipole
moments may make possible the observation of quantum
entanglement with a quantum dot nanocavity [4,5] which
has aroused a considerable amount of interest in them re-
cently.

Experiments generally measure either dipole moment
or radiative lifetime but rarely both, so a theoretical rela-
tion between them could be valuable. Although there have
been calculations of the IFQD dipole moment before [5], to
the best of our knowledge there have been no publications
of calculations of both dipole moment and radiative life-
time. For small quantum dots where the dipole moment
is independent of the direction of the light wave vector
it couples to, the dependence of the radiative lifetime on
the dipole moment is simply quadratic, becoming, how-
ever, more complicated for large quantum dots where the
coupling strength varies with the emission direction. The
emission finally evolves toward the strict directional emis-
sion in the growth direction in the quantum well limit,
where again the radiative broadening is simply propor-
tional to the square of the dipole moment for coupling to
the light propagating in the growth direction. Though the
basic physics is unchanged in the case of large interface
quantum dots, one should note that a lifetime measure-
ment provides access to an angle integrated dipole mo-
ment while a direct measurement of the dipole moment
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via transmission or absorption gives only the correspond-
ing directional component.

Recently, we have clarified the relation between dipole
moment and radiative lifetime in semiconductor quantum
dots [6]; here, we present actual calculations of the two
quantities for interface fluctuation quantum dots. We also
address the question of the angular dependence of IFQD
emission which occurs for large dots and marks the begin-
ning of a smooth transition to the ideal quantum well case
where emission is in the forward and backward directions
only.

Here, IFQD’s are assumed to be spherically symmet-
ric in the xy-plane whereas in reality they may be elon-
gated in the [11̄0] direction [2]. Since relatively little is
known about the in-plane shape of IFQD’s, we have not
attempted a more exact description.

2 Calculation of dipole moment and radiative
lifetime

We calculate the dipole moment and radiative broaden-
ing of an interface fluctuation quantum dot of radius R0.
Since R0 is usually much larger than the two-dimensional
exciton Bohr radius (≈ 6 nm in GaAs), we assume the
electron-hole relative motion to be unaffected by the in-
plane confinement. Our theory therefore cannot describe
the regime of strongly confined IFQD’s with quantum dot
radii < 10 nm where Andreani et al. [5] calculate an in-
crease in oscillator strength with decreasing quantum dot
radius by diagonalization of a single-particle Hamiltonian.
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However, for the estimated IFQD size of 40–60 nm [2,3]
it is fully applicable and due to its simplicity is not re-
stricted to intermediate dot sizes as is the case with any
method involving a large number of localized base func-
tions [5]. The method is thus well suited for larger dots
and for approaching the quantum well limit.

The exciton is localized within a circular well centered
on the origin. The barrier height is determined by the dif-
ference of the confinement energy induced by a monolayer
fluctuation. For the z-direction, we assume confinement in
an infinite well of width Lz. We thus write the electron-
hole wave function as

Ψ(re, rh) = ψ(R‖)φ1s(r‖)ζz(ze)ζz(zh), (1)

taking into account only 1s states. R‖ and r‖ are the in-
plane center of mass and relative motion coordinates, re-
spectively,

R‖ =
me

me +mh
re,‖ +

mh

me +mh
rh,‖, (2)

r‖ = re,‖ − rh,‖ (3)

with electron (hole) mass me (mh) and electron (hole)
in-plane coordinate re,‖ (rh,‖).

ζz(ze/h) =
√

2
Lz

cos
(
πze/h
Lz

)
(4)

is the electron/hole wave function in z-direction. φ1s(r‖)
is the 1s exciton wave function and ψ(R‖) is the center of
mass wave function of the exciton. For a circular lateral
quantum well and using polar coordinates in the xy-plane,
the wave function becomes separable and we have

ψ(R‖) = Rn(R‖)
1√
2π

eimφ, (5)

where n is the radial and m the angular quantum number.
The radial wave functions Rn(R‖) are Bessel functions
both inside and outside the dot which have to be matched
together correctly at the well boundary.

The dipole moment can then be calculated as [9]

D(K) = dcv

∫
d3RΨ(R,R) e−iK·R

= dcv

∫
d3re

∫
d3rh Ψ(re, rh) e−iK·reδ(re − rh)

= dcvφ1s(r‖ = 0)
∫

d2R‖ ψ(R‖)e−iK‖·R‖

×
∫

dZ |ζz(Z)|2e−iKzZ . (6)

Inserting equation (5) into equation (6) and calculating
the dipole moment for coupling with light propagating
in the growth direction, K = K ez we immediately see
that the dipole moment vanishes for all m 6= 0-states.
These are usually called “optically forbidden” states. How-
ever, we will later show that they have a finite radiative

broadening. Equation (6) also shows that for small quan-
tum dots where e−iK·R varies little over the quantum dot,
the dipole moment becomes independent of the direction
of the light wave vector K.

The radiative broadening of a semiconductor quantum
dot is [6]

Γrad =
nπω3

(2π)3ε0~c3vac

2∑
σ=1

∫ π

0

dθ sin(θ)

×
∫ 2π

0

dφ |D(K0, θ, φ) · eσ|2 . (7)

Here, n =
√
ε is the index of refraction of the semicon-

ductor material and K0 is the wave vector corresponding
to the frequency ω, K0 = nω/cvac. eσ is the polarization
vector of the light with polarization σ. D(K0, θ, φ) is the
dipole moment for coupling to light with wave vector K0

propagating in the direction given by the angles (θ, φ). We
have assumed the same index of refraction for quantum
dot and medium.

For small quantum dots where the dipole moment is
independent of angles θ and φ, we immediately recover the
well-known quadratic dependence of the radiative broad-
ening on the dipole moment from equation (7),

Γ =
nω3|D|2

3πε0~c3vac
· (8)

In the quantum well limit, the exciton center of mass
wave function is a plane wave with wave vector Q‖,
ψ(R‖) = eiQ‖·R‖/

√
A where A is the quantization area.

Equation (6) thus reads

D(K) = dcvφ1s(r‖ = 0)
∫

d2R‖
e−i(K‖−Q‖)·R‖

√
A

×
∫

dZ|ζz(Z)|2e−iKzZ

= dcvφ1s(r‖ = 0)δK‖,Q‖
√
A

∫
dZ|ζz(Z)|2e−iKzZ ,

(9)

yielding constant oscillator strength per unit area. Assum-
ing spatially homogeneous excitation in growth direction,
only states with vanishing in-plane momentum Q‖ = 0
are excited. The radiative broadening in a quantum well
then becomes [10,11]

Γrad =
ωd2

cv|φ1s(r = 0)|2
ncvacε0~

· (10)

3 Results

We have first calculated the energy levels of exciton states
in a GaAs/AlxGa1−xAs IFQD for quantum well widths of
Lz = 3 nm, 6 nm and an Al content of the barrier x = 0.3,
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Table 1. Lowest four states of an IFQD with a radius of 20 nm
and different well width Lz and Al-contents of the barrier x
(GaAs/AlxGa1−xAs structure). Energies are measured from
the bottom of the quantum dot. The barrier heights in the
in-plane direction, i.e. the differences in quantization energy
induced by a monolayer fluctuation, are also given.

Energy(meV)

Lz = 3 nm Lz = 6 nm

in-plane barrier 16.1 meV 5.4 meV 9.1 meV

n m x = 0.3 x = 0.3 x = 1.0

0 0 2.2 1.7 2.0

0 1 5.5 4.1 4.9

0 2 9.7 unbound 8.3

1 0 11.0 unbound 8.9

1.0 [12]. The lowest four energy levels are listed in Table 1
for a typical lateral quantum dot radius of 20 nm. We see
that in the 6 nm GaAs/Al0.3Ga0.7As quantum well, only
two states are bound, of which only one, i.e. the ground
state, is optically active. The variation in well widths and
barrier Al content induces ground state energy changes of
up to 0.5 meV.

We want to stress that the values for quantization
energies as well as energy separation between levels are
heavily dependent on the exact shape of the confining
potential. This is especially important because IFQD’s
have been found to be elongated in the [11̄0] direction [2].
We discuss the effects of elongation for the case of a
rectangular quantum dot with infinite barriers and side
lengths Lx, Ly. The ground state energy is then EG =
π2~2/(2ML2

x) + π2~2/(2ML2
y) where M is the exciton

mass, M = me + mh. Keeping the area A = LxLy con-
stant, we find that EG is minimal for a square and may
grow to arbitrarily large values for an elongated rectangle.
Considering the energy splitting between ground state and
first excited optically active state, we find just the oppo-
site: For Lx ≥ Ly, the splitting is ∆E = 8π2~2/(2ML2

x).
The energy separation thus has a maximum for a square
shape and becomes arbitrarily small for an elongated rect-
angle.

From equation (6) we see that as long as interference
effects due to the finite wavelength of light are negligible
(KR0 � 1), the dipole moment is largely dependent on
the area covered by the center of mass exciton wave func-
tion ψ(R‖) and not on the shape of the confining potential.
This becomes important when comparing energy separa-
tions and dipole moments for states in different quantum
dots. If the dots are of different shape, the values of en-
ergy separation and dipole moment may seem completely
unrelated.

As mentioned before, IFQD’s in the GaAs/AlGaAs
system have been found to be elongated in the [11̄0] di-
rection. This shape asymmetry leads to a fine structure
splitting of the emission lines which was found to be as
large as 25 µeV for the ground state [2]. The fine struc-
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Fig. 1. Lowest seven energy levels of an interface fluctuation
quantum dot depending on the dot radius. States are labelled
according to their angular momentum m. Only m = 0-states
are optically allowed (GaAs/Al0.3Ga0.7As quantum well, Lz =
3 nm).

ture splitting as a function of the elongation has been
calculated by Ivchenko [13].

From hereon, all calculations are for the case of a well
width of 3 nm and Al content of the barrier x = 0.3.
Figure 1 shows the energy levels of the lowest seven IFQD
states depending on the quantum dot radius. The solid
lines mark the optically active states (m = 0) which may
be observed in absorption experiments.

In Figure 2, we have plotted the dipole moments for
coupling to light propagating in z-direction for the first
three optically active states (m = 0, solid lines). We see
that they rise almost linearly over the entire range of IFQD
radii, reflecting their proportionality to the square root of
the area covered by the wave function. The excited states
show a deviation for the smallest calculated IFQD radii
because the states are weakly bound and thus extend far
out into the barrier.

An approximate relation between the dipole moments
and thus oscillator strengths of different states can be
found. Consider a circular quantum dot with infinite bar-
riers in the in-plane direction and a radiusR0. The exciton
center of mass wavefunction is then

ψ(R′‖) =


1√

πJ1(kn)
J0(knR′‖), R

′
‖ < 1

0, R′‖ > 1

(11)

where R′‖ = R‖/R0, J0(k) and J1(k) are Bessel functions
and kn is a zero of the Bessel function J0(k) (k0 = 2.4,
k1 = 5.5, k2 = 8.7). Neglecting the K-dependence in equa-
tion (6), we calculate for small quantum dots (K0R0 � 1,
i.e. the quantum dot has to be small compared to the
wavelength of light)

D(K) = dcvφ1s(r‖ = 0)
2
√
πR0

kn
· (12)
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Fig. 2. Dipole moment for coupling to light propagating in the
growth direction for the first three m = 0 states (solid lines);
m 6= 0-states have a vanishing dipole moment. The dotted
lines show approximations for the dipole moment of the excited
states as discussed in the text (1 eÅ = 4.8 Debye, calculation
for a GaAs/Al0.3Ga0.7As quantum well, Lz = 3 nm).

Thus, we retrieve the linear dependence on the quantum
dot radius and find that the ratio of the dipole moments
of the two optically active states with quantum numbers
(n,0) and (n′,0) is kn′/kn. Combining the ground state
dipole moment with the above ratio leads to a reasonable
approximation for the higher states; see Figure 2, dotted
lines. We find good agreement with the values calculated
for a finite quantum dot except for the very weakly bound
states where the IFQD wave function reaches out far into
the finite barrier.

In Figure 3, we plot the radiative broadening
(~/lifetime) of the lowest four states. Although the m 6= 0-
states do not couple to light propagating in the growth
direction, they may still show a considerable radiative
broadening; see the m = 1, n = 0-state (dashed line). This
is due to their finite spontaneous emission in directions
other than the growth direction. For small quantum dots
(KR0 � 1), spontaneous emission is almost direction-
independent [6]. Accordingly, the radiative broadening for
the m 6= 0-states is very small. Only when the dot size
reaches the order of the transition wavelength in the semi-
conductor medium (i.e. KR0 ≈ 1) does the radiative
broadening become significant because the finite radiative
broadening of m 6= 0-states is essentially a consequence
of interference effects between exciton wave function
and light field. For small quantum dot radii, the radia-
tive broadening of the first excited state (n = 0,m = 1)
rises like R3

0.
The radiative broadening of m = 0-states, by contrast,

shows a very different dependence on the quantum dot ra-
dius. The ground state (m = n = 0) radiative broadening
rises quadratically for small lateral radii while saturating
towards the limit of quantum well radiative broadening
for large lateral extensions. In a quantum dot with infinite
barriers in the in-plane direction, every optically allowed
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Fig. 3. Radiative broadening for the lowest four states. Even
though the m 6= 0-states are optically forbidden, they may
show a considerable radiative broadening (GaAs/Al0.3Ga0.7As
quantum well, Lz = 3 nm).

state shows a quadratic rise of the radiative broadening
for small IFQD radii. For finite barriers, however, higher
optically allowed states are not bound for these radii. Also,
their radiative lifetimes saturate at lower IFQD radii than
the ground state. The saturation is due to interference ef-
fects between light field and exciton wave function and
the fact that the wave function of an excited state varies
faster than that of the ground state (n denotes the num-
ber of zeroes of the exciton wave function); this is easily
understandable. Looking at Figure 3, note that the radia-
tive broadening of the first optically active excited state
(n = 1,m = 0) varies very little, i.e. it is saturated when-
ever it is bound for the parameters considered here.

We will now turn to the investigation of the direc-
tion dependence in IFQD’s, considering the electron-heavy
hole transition where the dipole moment lies in the in-
plane direction. With nonresonant excitation in circular
quantum dots, the emission intensity of an ensemble of
quantum dots depends only on the azimuthal angle θ.
Direction dependent emission intensity is governed by
the scalar product of the dipole moment and the light
polarization vector, dcv · eσ, which introduces a factor
(1 + cos2 θ)/2, and the absolute value of the dipole mo-
ment, D(K). For small quantum dots, D(K) is indepen-
dent of the direction of the light wave vector K. For larger
sizes, D(K) becomes more and more anisotropic and, for
the case of the IFQD ground state, concentrated towards
the z-direction. This culminates in the ideal quantum well
limit (R0 → ∞) where emission is in ±z-direction exclu-
sively. In Figure 4 we plot the emission from the quantum
dot ground state for different IFQD radii. The angle is
measured with respect to the sample normal. The emis-
sion is normalized to the emission in the normal direction
for each IFQD radius. We observe that for a radius of
10 nm, the emission varies by a factor of 2 due to the fac-
tor (1 + cos2 θ)/2, while for a 100 nm-quantum dot the
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Fig. 4. Angle dependence of the emission of the ground
state for different IFQD radii. The emission becomes more
and more concentrated in forward and backward direction
for larger radii, finally reaching the limit of a quantum well
where emission is in the forward and backward directions only
(GaAs/Al0.3Ga0.7As quantum well, Lz = 3 nm). The emission
is normalized to the emission in growth direction.

emission in the in-plane direction is only 10% of the emis-
sion into the same solid angle in the growth direction.
For even larger IFQD radii, the rate of emission (i.e. the
radiative broadening) stays constant with growing dot ra-
dius but the emission cone becomes narrower. The degree
of anisotropy depends on the value of the product of the
quantum dot radius and the transition wave vector in the
medium, K0R0.

As mentioned above, higher excited states have faster
varying wave functions than the ground state and thus
show a higher degree of anisotropy at the same quantum
dot radius. This is illustrated in Figure 5 where we plot
the angle dependence of the first three optically allowed
states for an IFQD radius of 30 nm. The 2nd excited state
emission decreases by 75% when varying the emission an-
gle from the normal direction to the in-plane direction,
while the ground state emission in the in-plane direction
is about 40% of the emission in the z-direction.

4 Conclusion

We have calculated the energy levels, dipole moments
and radiative broadening of interface fluctuation quantum
dots. The quantum dot states can be divided into opti-
cally allowed/optically forbidden states which couple/do
not couple to light propagating in the growth direction.
Optically forbidden states, however, can still be radia-
tively broadened if they have a finite dipole moment for
light wave vectors in directions other than the growth di-
rection. Their radiative broadening is very small for lateral
IFQD radii which are small compared to the wavelength
of light in the medium but may increase sharply for larger
quantum dots.
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Fig. 5. Angle dependence of the emission of optically allowed
states for an IFQD radius of 30 nm. Higher states show a higher
degree of anisotropy at the same radius due to the faster varia-
tion of their wave functions (GaAs/Al0.3Ga0.7As quantum well,
Lz = 3 nm). The emission is normalized to the emission in
growth direction.

The dipole moment of an optically allowed exciton
state, by contrast, grows linearly with quantum dot radius.
Consequently, the radiative broadening grows quadrati-
cally for small quantum dot sizes. Once the IFQD radius
becomes of the order of magnitude of the wave length of
light in the medium, however, the radiative broadening
saturates and converges towards the quantum well value
of 32 µeV (GaAs) for large quantum dots. This saturation
is accompanied by a change of the angular emission pat-
tern in the form of a smooth transition from the emission
in all directions of a quantum dot to the emission into the
forward and backward direction exclusively of a semicon-
ductor quantum well. For higher excited states, saturation
as well as anisotropy of emission occur at smaller dot radii
than for the ground state.
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